Department of Civil and Environmental Engineering Faculty at the University of Delaware

James Kirby

Edward C. Davis Professor
201 Ocean Engineering Lab
Newark, Delaware 19716
Phone: 302-831-2438
Research Website



EDUCATION

1983 | Ph.D | University of Delaware
1976 | Master | Brown University
1975 | Bachelor | Brown University

SHORT BIO

Ocean surface waves, nearshore hydrodynamics and sediment transport; tsunamis; time series analysis

RESEARCH AREAS/SUSTAINABILITY

  • Coastal and Ocean
  • Disasters

SELECTED PUBLICATIONS

Citation statistics

  • Web of Science, 6/27/2018: 6,438 citations, h-index = 39
  • Google Scholar, 6/15/2018: 14,139 citations, h-index = 53

Edited Proceedings

  1. Kaliakin, V. N., Kirby, J. T., Yamamuro, J., Bhattacharya, B. and Shenton, H. W. (eds), EM2004, The 17th ASCE Engineering Mechanics Conference, Newark, June 13-16, 2004. Published on CD.

Chapters in Books

  1. Kirby, J. T., 1997, “Nonlinear, dispersive long waves in water of variable depth”, Advances in Fluid Mechanics, 10, J. N. Hunt (ed), Computational Mechanics Publ., 55 – 125.
  2. Martin, P. A., Dalrymple, R. A. and Kirby, J. T., 1997, “Parabolic modeling of water waves”, Advances in Fluid Mechanics,  10, J. N. Hunt (ed), Computational Mechanics Publ., 169 – 213.
  3. Kirby, J. T., 2003, “Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents”, in Advances in Coastal Modeling, V. C. Lakhan (ed), Elsevier, 1-41.

Refereed Journal Articles

  1. Kirby, J.T., Dalrymple, R.A. and Liu, P.L.-F., 1981, “Modification of edge waves by barred-beach topography”, Coastal Engineering,  5, 35-49, doi:10.1016/0378-3839(81)90003-X.
  2. Kirby, J.T. and Dalrymple, R.A., 1983, “Propagation of obliquely incident water waves over a submerged trench”, Journal of Fluid Mechanics,  133, 47-63, doi:10.1017/S0022112083001780.
  3. Kirby, J.T. and Dalrymple, R.A., 1983, “Oblique envelope solutions of the Davey-Stewartson equations in intermediate water depth”, Physics of Fluids,  26, 2916-2918, doi:10.1063/1.864056.
  4. Kirby, J.T. and Dalrymple, R.A., 1983, “A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly-varying topography”, Journal of Fluid Mechanics,  136, 453-466, doi:10.1017/S0022112083002232.
  5. Kirby, J.T., 1984, “A note on linear surface wave-current interaction over slowly varying topography”, Journal of Geophysical Research,  89, 745-747, doi:10.1029/JC089iC01p00745.
  6. Dalrymple, R.A., Kirby, J.T. and Hwang, P.A., 1984, “Wave diffraction due to areas of energy dissipation”, Journal of Waterway, Port, Coastal and Ocean Engineering,  110, 67-79, doi:10.1061/(ASCE)0733-950X(1984)110:1(67).
  7. Kirby, J.T. and Dalrymple, R.A., 1984, “Verification of a parabolic equation for propagation of weaklynonlinear waves”, Coastal Engineering,  8, 219-232, doi:10.1016/0378-3839(84)90002-4.
  8. Liu, P.L.-F., Yoon, S.B. and Kirby, J.T., 1985, “Nonlinear refraction-diffraction of waves in shallow water” Journal of Fluid Mechanics,  153, 184-201, doi:10.1017/S0022112085001203.
  9. Kirby, J.T., 1986, “A general wave equation for waves over rippled beds”, Journal of Fluid Mechanics,  162, 171-186, doi:10.1017/S0022112086001994.
  10. Kirby, J. T., 1986, “On the gradual reflection of weakly-nonlinear Stokes waves in regions with varying topography”, Journal of Fluid Mechanics,  162, 187-209, doi:10.1017/S0022112086002008.

View Full CV