DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

UNDERGRADUATE PROGRAM CLASS OF 2027

University of Delaware August 2023

Table of Contents

Introduction	3
Common First Semester in Engineering	3
Undergraduate Degree Programs	3
Civil Engineering Bachelor's Degree Program	3
Civil Engineering Technical Electives	5
Construction Engineering and Management Bachelor's Degree Program	9
Environmental Engineering Bachelor's Degree Program	11
Environmental Engineering Technical Electives	13
4 + 1 Degree Programs	14
Academic Minors	16
Minor in Civil Engineering	16
Minor in Sustainable Infrastructure	18
Minor in Environmental Engineering	19
Minor in Environmental Sustainability	20
Department Faculty	21
Administrative and Support Staff	24
Advisement	24
Student Organizations	25
Department Mentoring Program	25
Computing Facilities	25
Engineering Computer Laboratories	25
Personal Computers	25
Computer-Aided Design (CAD) Software	26

Introduction

Welcome to the University of Delaware! The Department of Civil and Environmental Engineering is one of seven departments in the College of Engineering. Over 2600 undergraduates are enrolled in the College for the 2023 fall semester, of which approximately 400 are undergraduate civil engineering, construction engineering and management, and environmental engineering students. Graduate student enrollment in the department is approximately 115 students.

Common First Semester in Engineering

The College of Engineering has a common first semester. One of these classes is EGGG101, Introduction to Engineering. In this first-year experience course, students collaborate with peers to apply the engineering design process to solve openended product and process-based design challenges. EGGG101 addresses "grand challenges" in engineering. At the end of first semester, students will have the opportunity to request a change of major into a different engineering major. Admission to another College of Engineering major is contingent on meeting the academic requirements and space available in the major.

Undergraduate Degree Programs

The Department of Civil and Environmental Engineering offers three undergraduate degree programs in civil engineering, construction engineering and management, and environmental engineering, as well as four minors.

The undergraduate programs prepare graduates for entry-level positions. After four years of work experience, students can qualify for a license to practice by passing a Principles and Practice of Engineering (PE) examination administered by a state board. Students take the introductory Fundamentals of Engineering (FE) exam, which is a pre-requisite for the PE, during senior year. In Delaware, the PE license is administered by the Delaware Association of Professional Engineers (DAPE). Information about the exam can be found at www.ncees.org.

Civil Engineering Bachelor's Degree Program

The Bachelor of Civil Engineering (BCE) degree at the University of Delaware offers training in all the major disciplines of civil engineering: structural, geotechnical, transportation, environmental, infrastructure systems, railroad, and coastal engineering. The curriculum gives students an opportunity to acquaint themselves with the various disciplines within the profession. Civil engineering students may select technical electives in one field or take a variety of courses to explore several areas of civil engineering.

A complete description of the undergraduate curriculum is in the <u>Undergraduate Catalog</u>. The check sheet shown on the next page lists the recommended courses for each semester and helps students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

Following the check sheet is a list of technical elective courses.

CIVIL ENGINEERING PROGRAM

(125 hours)

The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR FALL		16 credi	its	Sem.	Grade
	General Chemistry*	CHE	M 103		

General Chemistry*	CHEM 103	
	/133 (4)	
Computer Science	CISC 106 (3)	
Intro. to Engineering	EGGG 101 (2)	
Analy. Geom. & Calc. A*	MATH 241 (4)	
Breadth Requirement	(3)	

FIRST YEAR

SPRING

Intro to Civil Eng. Design (H)	CIEG 161 (3)	
Seminar in Composition	ENGL 110 (3)	
Analy. Geom. & Calc. B*	MATH 242 (4)	
Fundamentals of Physics I*	PHYS 207/227	
-	(4)	
Public Spking/Prof Present.	COMM 212(3)	

17 credits

Sem. Grade

Sem. Grade

Sem. Grade

SOPHOMORE YEAR

FALL

Statics (H)	CIEG 211 (3)	
Intro to Sustainability (H)	CIEG 402 (3)	
Analy. Geom. & Calc. C	MATH 243 (4)	
Science with lab elective (a)	(4)	
Tech. Writing/Breadth Req.	ENGL 410 (3)	

17 credits

Sem. Grade

Sem. Grade

Sem. Grade

SOPHOMORE YEAR

SPRING	16 credits	Sem.	Grade
Solid Mechanics	CIEG 212 (3)		
CE Materials Lab	CIEG 213 (1)		
Prob. & Stats. for Eng (H)	CIEG 315 (3)		
Engineering Math I	MATH 351 (3)		
Construction Materials	CIEG 214 (3)		
Comm. with Stakeholders	CIEG 411 (3)		

JUNIOR YEAR

FALL 15	credits		Sem.	Grade
Structural Analysis/Design (H)	CIEG 301	(4)		
Fluid Mechanics (H)	CIEG 305	(3)		
Fluid Mechanics Lab	CIEG 306	(1)		
Soil Mech and Fndation Eng.	CIEG 320	(3)		
Soil Mech/Fndation Eng Lab	CIEG 323	(1)		
Environmental Engineering	CIEG 331	(3)		

JUNIOR YEAR

SPRING

Geotechnical Engineering	CIEG 321 (3)
Transportation Engineering	CIEG 351 (3)
Transportation Eng. Lab	CIEG 451 (1)
Eng. Project Mgmt (H)	CIEG 486 (3)
Breadth Requirement	(3)
Technical Elective	(3)

16 credits

SENIOR YEAR FALL

Senior Design (H)	CIEG 461 (2)	
Breadth Requirement	(3)	
Technical Elective	(3)	
Technical Elective	(3)	
Technical Elective	(3)	

14 credits

SENIOR YEAR

SPRING

	Senior Design (H)	CIEG 461 (2)	
F	Technical Elective	(3)	
-	Technical Elective	(3)	
	Breadth Requirement	(3)	
П	Breadth Requirement	(3)	

14 credits

All breadth requirements (18 credit hours) and ENGL110 require a C- or better. See UD Academic Catalog for more information.

Creative Arts &	Sem.	Grade	History & Cultural	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
Humanities			Change					
Add'l Breadth Requirement (18 credits)								
ENGL 410			Prof./Career Prep			Prof./Career Prep		

_ two upper-level (300 and higher) courses

Multicultural Requirement

^{*}Grade of C- or higher for degree requirement or as pre-requisite for other courses. (H) Department of Civil and Environmental engineering offers an honors section of this course.

One course from: BISC 207, BISC 208, GEOG 220/221, GEOL 105/115, or GEOL 107

Civil Engineering Technical Electives

Technical electives include upper-level courses in engineering, mathematics, computer science, and the sciences. Graduate-level courses may also be taken as technical electives. The following is a list of suggested technical electives for different aspects of civil engineering. Some of the courses may not be offered a particular year. Some courses offered in other departments may also be approved as technical electives. **Students should meet with their advisor before selecting courses. This list is not exhaustive.**

- 1. Technical electives will include courses from engineering, mathematics, and the sciences, or by the approval of the Civil Engineering undergraduate committee.
- 2. All technical electives must be 300-level or higher, or by approval of the Civil Engineering undergraduate committee.
- 3. Four out of six technical electives must be 400-level or higher CIEG courses.
- 4. Four out of six technical electives must be taken at UD.

Courses that satisfy the technical elective requirements are listed below. Students may choose courses from one or more categories.

BISC 300-699	MAST 300-699
BMEG 300-699	MATH 300-699
CHEG 300-699	MEEG 300-699
CHEM 300-699	MSEG 300-699
CIEG 300-699	PHYS 300-699
CISC 300-699	PLSC 421
CPEG 300-699	PLSC 430
ELEG 300-699	STAT 300-699
GEOG 372	UNIV 401-402
GEOL 300-699	

Civil Infrastructure Systems

CIEG 318	Introduction to Railroads
CIEG 414	Railroad Geotechnical Engineering
CIEG 417	Introduction to Railroad Safety and Derailment Engineering
CIEG 452	Transportation Facilities Design
CIEG 453	Roadway Geometric Design
CIEG 454	Urban Transportation Planning
CIEG 457	Contemporary Topics in Transportation
CIEG 458	Pavement Analysis and Design
CIEG 459	Optimization in Design and Construction
CIEG 462	Transportation Sustainability
CIEG 463	Traffic Engineering and Modeling
CIEG 641	Risk Analysis
CIEG 646	Convex Optimization
CIEG 647	Network Optimization
CIEG 650	Urban Transportation Systems
CIEG 655	Civil Infrastructure Systems
GEOG 372	Introduction to GIS
LARC 222	Introduction to Surveying

LARC 343	Site	Engine	eering

Urban Hydrology and Drainage Design LARC 431

Structural Engineering

CIEG 311	Dynamics
CIEG 401	Introduction to the Finite Element Method
CIEG 403	Sustainability Applications in Infrastructure
CIEG 404	Prestressed Concrete Design
CIEG 406	Reinforced Concrete Design
CIEG 407	Building Structure Design
CIEG 412	Structural Steel Design
CIEG 413	Advanced Structural Analysis
CIEG 421	Foundation Engineering
CIEG 423	Advanced Reinforced Concrete
CIEG 464	Building Information Modeling
CIEG 492	International Construction
CIEG 495	Temporary Structures Design
CIEG 496	Building Systems Engineering and Design
CIEG 608	Highway Bridge Engineering
CIEG 611	Structural Dynamics Design
CIEG 612	Advanced Mechanics of Materials

Geotechnical Engineering

CIEG 401	Introduction to the Finite Element Method
CIEG 421	Foundation Engineering
CIEG 422	Earth Structures Engineering
CIEG 424	Earth Retaining Structures
CIEG 425	Unsaturated Soil Mechanics
CIEG 427	Deep Foundations
CIEG 428	Ground Improvement Methods
CIEG 605	Intermediate Topics in Finite Element Analysis
CIEG 626	Soil Behavior

Environmental Engineering

CIEG 433	Hazardous Waste Management
CIEG 436	Processing, Recycling, Management of Solid Wastes
CIEG 440	Water Resources Engineering
CIEG 445	Industrial Ecology
CIEG 465	Global Sustainable Engineering
CIEG 498	Groundwater Flow and Contaminant Transport
or	
GEOL 428	Hydrogeology
GEOL 421	Environmental and Applied Geology
LARC 442	Stormwater Management for Sustainable Development
PLSC 421	Nonpoint Source Pollution
PLSC 430	Urban Ecology

Transportation Engineering

CIEG 318	Introduction to Railroads
CIEG 417	Introduction to Railroad Safety and Derailment Engineering

CIEG 418	Railroad Engineering
CIEG 452	Transportation Facilities Design
CIEG 453	Roadway Geometric Design
CIEG 454	Urban Transportation Planning
CIEG 457	Contemporary Topics in Transportation
CIEG 458	Pavement Analysis and Design
CIEG 459	Optimization in Design and Construction
CIEG 463	Traffic Engineering and Modeling

Coastal Engineering

CIEG 405	Advanced Fluid Mechanics
CIEG 440	Water Resources Engineering
CIEG 471	Introduction to Coastal Engineering
CIEG 639	Ocean Fluid Dynamics
CIEG 675	Matlab for Engineering Analysis
CIEG 679	Sediment Transport Mechanics
CIEG 680	Coastal Processes
GEOL 411	Fluvial Geomorphology
GEOL 434	Geology of Coasts
MAST 402	Physical Oceanography
MAST 455	Geophysical Fluid Dynamics

Prescribed Breadth Courses

In addition to University and College of Engineering Breadth requirements, Civil Engineering majors must complete two courses from the list of Professional and Career Preparation courses found in the <u>Undergraduate Catalog</u>. These courses may also simultaneously satisfy College of Engineering Breadth requirements. The following is a list of suggested Professional and Career Preparation prescribed Breadth courses. Some of the courses may not be offered in a particular year.

Law and Social Issues in Business
Leadership Studies I
Leadership Studies II
Introduction to Business
Introduction to Service and Operations Management
Selected Topics in Management
Acceptance and Resistance to Innovation
Acceptance and Resistance to Innovation
Environmental Economics
Teaching Writing One-to-One
Adolescent Development and Educational Psychology
Teaching Exceptional Adolescents
Diversity in Secondary Education
Reading in the Content Areas
Teaching Science in Secondary Schools
Science, Society and Energy
Electricity Policy and Planning
Readings in Energy and Environment
Business Basics for Entrepreneurs
Start Up of the Professional You

ENTR 156	From Ideas to Action
ENTR 157	Venturing for Good
ENTR 351	Entrepreneurial Marketing
ENTR 353	ENTR Apprentice: Leadership & Influence
ENTR 364	Entrepreneurship in Practice: Internship
ENTR 420	Social Entrepreneurship
ENTR 450	Business Accelerator for New Ventures
ENTR 451	Special Topics in Entrepreneurship
ENTR 455	Startup Experience I
ENTR 456	Startup Experience II
ENTR 457	Legal Issues for Entrepreneurs
ENTR 458	Developing New Technology-Based Products
FINC 459	Startup Finance & Raising Capital for Entrepreneurs
ENTR 460/660	High Technology Entrepreneurship
ENTR 464	Social Entrepreneurship Practicum Credit(s): 3
ENTR 616	Applied Creativity
FINC 200	Fundamentals of Finance
LEAD 110	Perspectives on Leadership
LEAD 340	Leadership Internship
LEAD 341	Decision-Making and Leadership
LEAD 400	Leadership for the Common Good
LEAD 404	Leadership in Organizations
LEAD 411	Topics in Leadership Dynamics
MAST 676	Environmental Economics
MLSC 406	Advanced Leadership II
UAPP 325	Public Policy Analysis
UAPP 406	Plan Sustainable Communities & Regions
UAPP 411	Regional Watershed Management
UAPP 421	Contemporary Issues in a Global Society

Construction Engineering and Management Bachelor's Degree Program

The Bachelor of Construction Engineering and Management (BCEM) program focuses on implementing the engineering solutions designed by the sub-disciplines of civil engineering: structural, environmental, geotechnical, and materials and transportation engineering.

The goal of construction engineering and management is to deliver a physical facility in a safe manner within time and budget constraints. As the industry evolves and progresses, this goal becomes increasingly difficult. The construction enterprise itself becomes complex and technically demanding under increasing economic, time, and quality constraints.

There is a rapidly growing need for engineers prepared for the challenges of construction management in the future. This need is recognized by industry, has been addressed by professional society and accrediting bodies, and validated through market studies. The Department of Civil and Environmental Engineering, with strong encouragement of industry and alumni, launched the bachelor's program in Construction Engineering and Management in 2017. The program requires 126 credit hours and is structured following ABET-accreditation guidelines thereby giving a path to professional licensure. Other distinctive features include:

- mandatory practical experience through a required 26-week guided co-op
- required completion of UD Certificate of Business Essentials or an optional minor through the UD Alfred Lerner College of Business and Economics
- optional international experience through technical electives
- numerous opportunities for professional society involvement

Students complete prescribed breadth courses as part of the curriculum. Remaining breadth courses are discretionary and chosen by the student, who should ensure that the breadth requirements and multicultural requirement of the University are satisfied.

A complete description of the undergraduate curriculum is in the <u>Undergraduate Catalog</u>. The check sheet shown on the next page lists the recommended courses for each semester and helps students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

CONSTRUCTION ENGINEERING AND MANAGEMENT PROGRAM (126 hours)

The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

Sem. Grade

Sem. Grade

Sem. Grade

Sem. Grade

FIRST YEAR

FALL

FALL

General Chemistry*	CHEM	
	103/133 (4)	
Computer Science	CISC 106 (3)	
Intro. to Engineering	EGGG 101 (2)	
Analy. Geom. & Calc. A*	MATH 241 (4)	
Breadth Reg. (CEM list)	(3)	

16 credits

16 credits

17 credits

FIRST YEAR

SPRING

SPRING

Introduction to CEM	CIEG 191 (3)	
Seminar in Composition	ENGL 110 (3)	
Analy. Geom. & Calc. B*	MATH 242 (4)	
Fundamentals of Physics I*	PHYS 207/227	
	(4)	
Breadth Reg. (CEM list)	(3)	

17 credits

16 credits

16 credits

Sem. Grade

Sem. Grade

Sem. Grade

Sem. Grade

SOPHOMORE YEAR

Statics (H)	CIEG 211	(3)	
Enviro., Health, and Safety	CIEG 292	(3)	
(H)			
CAD and BIM in Construct.	CIEG 291	(3)	
Prob. & Stats. for Engineers	CIEG 315	(3)	
Science/Math Elective (a)		(4)	

SOPHOMORE YEAR

Solid Mechanics	CIEG 212 (3)	
Civil Eng. Materials Lab	CIEG 213 (1)	
Construction Materials*	CIEG 214 (3)	
Eng. Survey and Geomatics	CIEG 390 (3)	
Public Spking/Prof Present.	COMM 212(3)	
Math Course (b)	(3)	

JUNIOR YEAR

FALL

Construct. Est./Cost Cntrl	CIEG 391	(3)	
Struct. Analysis/Design (H)	CIEG 301	(4)	
Soils Mech and Fndation Eng	CIEG 320	(3)	
Soils Mech/Fndation Eng Lab	CIEG 323	(1)	
Fluid Mechanics (H)	CIEG 305	(3)	
Breadth Req. (CEM list)		(3)	

JUNIOR YEAR

SPRING

Survey of Accounting*	ACCT 200 (4)
Construction Plan/Sched. (H)	CIEG 392 (3)
Construction Law/Reg. (H)	CIEG 394 (3)
Engineering Proj. Mgmt. (H)	CIEG 486 (3)
Breadth Req. (CEM list)	(3)

SENIOR YEAR

FALL

Optim. in Design/Const.	CIEG 459 (3)	
Constr. Means/Methods	CIEG 393 (3)	
Co-op in Civil/Enviro Eng.	CIEG 481 (3)	
Technical Elective (c)	(3)	
Breadth Req. (CEM list)	(3)	

15 credits

SENIOR YEAR

SPRING

Senior Design	CIEG 491 (4)	
Technical Elective (c)	(3)	
General Elective	(3)	
Breadth Reg. (CEM list)	(3)	

13 credits

All breadth requirements (18 credit hours) and ENGL110 require a C- or better. See Undergraduate Catalog for more information.

Creative Arts &	Sem.	Grade	History & Cultural	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
Humanities			Change					
						ECON 100		
Add'l Breadth Req.			Add'l Breadth Req.			Add'l Breadth Req.		
ENGL 410			BUAD 100			FINC 200		

__ two upper-level (300 and higher) courses

_ Multicultural Requirement

- a) one course from: BISC 207, BISC 208, GEOL 105/115, GEOL 107, GEOG152, MATH 243, PHYS 208, PLSC 204/205
- b) MATH 349 (Elementary Linear Algebra) or MATH 351 (Engineering Math I). MATH 351 requires MATH 243.
- c) two courses from: CIEG 343, CIEG 402, CIEG 492, CIEG 493, CIEG 494, CIEG 495, CIEG496, or other approved elective

^{*}Grade of C- or higher for degree requirement or as pre-requisite for other courses.

(H) Department of Civil and Environmental engineering offers an honors section of this course.

Environmental Engineering Bachelor's Degree Program

The Bachelor of Environmental Engineering (BENE) program educates students in the causes, control, and prevention of environmental contamination so that they may analyze those processes and improve the quality of the earth's atmospheric, water, and land resources.

The core curriculum includes important aspects of thermodynamics and ecology, as well as courses on treating water and wastewater, controlling air pollution, and managing solid wastes. Laboratory coursework emphasizes the current methods for pollutant analysis and treatment. Through these courses, students develop an understanding of the fate of environmental contaminants; an ability to apply methods of modeling and simulation to environmental processes; and the ability to assess risk and estimate cost. The program emphasizes teaching students to apply knowledge to the conception, analysis, and design of solutions to real-world environmental problems. Students develop the ability to implement technology-based solutions through design, construction, and operation. Graduates will be competent in basic environmental engineering laboratory skills and will have received training in oral and written communications.

Students take four technical electives, allowing them to obtain greater depth within their area of interest to broaden their training through additional upper-level courses in engineering, science, and mathematics.

A complete description of the undergraduate curriculum is in the <u>Undergraduate Catalog</u>. The check sheet shown on the next page lists the recommended courses for each semester and helps students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

Following the check sheet is a list of technical elective courses.

ENVIRONMENTAL ENGINEERING PROGRAM

(126 hours)

The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR

FALL

FALL

16 credits Sem. Grade CHEM 103/133 (4) **CISC 106** (3) EGGG 101 (2) Intro. to Engineering

MATH 241 (4)

(3)

Sem. Grade

Sem. Grade

Sem. Grade

FIRST YEAR

SPRING

SPRING

General Chemistry*	CHEM	
	104/134 (4)	
Intro to Enviro. Eng.*	CIEG 133 (3)	
Seminar in Composition*	ENGL 110 (3)	
Analy. Geom. & Calc. B*	MATH 242 (4)	
Breadth Requirement	(3)	

17 credits

Sem. Grade

Sem. Grade

Sem. Grade

Sem. Grade

SOPHOMORE YEAR

General Chemistry*

Computer Science

Analy. Geom. & Calc. A*

Breadth Requirement

Statics (H) CIEG 211 (3) Enviro. Eng. Processes I* **CIEG 233** (3) Analy. Geom. & Calc. C* MATH 243 (4) Fundamentals of Physics I* PHYS 207/227 **Breadth Requirement** (3)

17 credits

17 credits

SOPHOMORE YEAR

Introductory Biology I	BISC 207	(4)	
Prob. & Stats. for Eng (H)	CIEG 315	(3)	
Engineering Math I	MATH 351	(3)	
Enviro. Eng. Processes II	CIEG 333	(3)	
Computer Elective (a)		(3)	

16 credits

15 credits

14 credits

JUNIOR YEAR

FALL

Fluid Mechanics (H) **CIEG 305** (3) Fluid Mechanics Lab **CIEG 306** (1) Microbiology of Eng. Systems **CIEG 444** (4) Organic Chemistry I **CHEM 321** (3) Water Resources Eng **CIEG 440** (3) **Breadth Requirement** (3)

JUNIOR YEAR

SPRING

Tech. Writing/Breadth Req.	ENGL 410	(3)	
PRM of Solid Waste	CIEG 436	(3)	
Water and WW Quality	CIEG 437	(3)	
Water and Wastewater Eng.	CIEG 438	(3)	
Groundwater Course (d)		(3)	

SENIOR YEAR

FALL

14 credits

Senior Design (H)	CIEG 461	(2)	
Designing Enviro. Treatment	CIEG 337	(3)	
Surface Water Course (b) or		(3)	
Tech. Elec.			
Air Pollution Course (c) or		(3)	
Tech. Elec.			
Breadth Requirement		(3)	·

SENIOR YEAR

Technical Elective

SPRING

Senior Design (H)	CIEG 461	(2)	
Air Pollution Course (c) or		(3)	
Tech. Elec.			
Surface Water Course (b) or		(3)	
Tech. Elec.			
Technical Elective		(3)	

*Grade of C- or higher for degree requirement or as pre-requisite for other courses. (H) Department of Civil and Environmental engineering offers an honors section of this course.

All breadth requirements (18 credit hours) require a C- or better. See UD Academic Catalog for more information.

Creative Arts & Humanities	Sem.	Grade	History & Cultural Change	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
Add'l Breadth Requirements (9 credits)								
ENGL 410			Prof./Career Prep					

two upper-level (300 and higher) courses

Multicultural Requirement

- APEC 480, GEOG 372, or LARC 150
- CIEG 415 (spring) or CIEG 434 (fall)

- CIEG 430, CIEG 468, or CIEG467 Ecohydrology (when offered)
- CIEG 498 or GEOL 428

Environmental Engineering Technical Electives

Courses that satisfy the technical elective requirements are listed below. Students may choose courses from one or more categories. **Students should meet with their advisor before selecting courses. This list is not exhaustive.**

BISC 641	Microbial Ecology
CHEG 332	Chemical Engineering Kinetics
CHEG 342	Heat and Mass Transfer
CHEG 622	Chemicals, Risk and the Environment
CHEM 443	Physical Chemistry I
CHEM 444	Physical Chemistry II
CHEM 527	Introductory Biochemistry
CIEG 300-699	
ENEP 410	Environmental Sustainability: Economic and Policy Analysis
GEOG 405	Computing for Environmental Research
GEOG 432	Environmental Hydrology
GEOG 455	Certification Systems for Sustainable Development
GEOG 473	Select Technical Topics
GEOL 421	Environmental and Applied Geology
LARC 343	Site Engineering
LARC 431	Urban Hydrology and Drainage Design
LARC 442	Stormwater Management for Sustainable Development
MAST 382	Introduction to Ocean Science
PLSC 405	Environmental Forensics and Society
PLSC 419	Soil Microbiology
PLSC 421	Nonpoint Source Pollution
PLSC 439	Plant-Contaminant Interactions
PLSC 603	Soil Physics
PLSC 608	Environmental Soil Chemistry
UAPP 411	Regional Watershed Management
UNIV 401-402	Senior Thesis

Environmental Treatment Processes

CHEG 332	Chemical Engineering Kinetics
CHEG 342	Heat and Mass Transfer
CIEG 632	Chemical Aspects of Environmental Engineering
CIEG 634	Physical Aspects of Environmental Engineering
CIEG 636	Biological Aspects of Environmental Engineering

Environmental Science

BISC 641	Microbial Ecology
CHEM 443	Physical Chemistry I
CHEM 444	Physical Chemistry II
CHEM 527	Introductory Biochemistry
CIEG 615	Meteorologic Processes in Air Pollution
GEOL 421	Environmental and Applied Geology
MAST 382	Introduction to Ocean Sciences
PLSC 405	Environmental Forensics and Society
PLSC 419	Soil Microbiology
PLSC 421	Nonpoint Source Pollution

PLSC 439	Plant-Contaminant Interactions
PLSC 603	Soil Physics
PLSC 608	Environmental Soil Chemistry
Environmental	Transport and Modeling
GEOG 432	Environmental Hydrology
LARC 431	Urban Hydrology and Drainage Design
LARC 442	Stormwater Management for Sustainable Development
PLSC 421	Nonpoint Source Pollution
Facility Design	
CIEG 301	Structural Analysis and Design
CIEG 302	Structural Design
CIEG 311	Dynamics
CIEG 320	Soil Mechanics
CIEG 321	Geotechnical Engineering
CIEG 471	Introduction to Coastal Engineering
CIEG 486	Engineering Project Management
GEOG 473	Select Technical Topics
LARC 343	Site Engineering
Environmental	Management and Policy
CHEG 622	Chemicals, Risk and the Environment
CIEG 402	Introduction to Sustainability Principles in Civil Engineering

CHEG 622	Chemicals, Risk and the Environment
CIEG 402	Introduction to Sustainability Principles in Civil Engineering
CIEG 433	Hazardous Waste Management
CIEG 445	Industrial Ecology
CIEG 465	Global Sustainable Engineering
ENEP 410	Environmental Sustainability: Economic and Policy Analysis
GEOG 405	Computing for Environmental Research
GEOG 455	Certification Systems for Sustainable Development
LARC 442	Stormwater Management for Sustainable Development
UAPP 411	Regional Watershed Management

Prescribed Breadth Courses

In addition to University and College of Engineering Breadth requirements, Environmental Engineering majors must complete one course from the list of Professional and Career Preparation courses found in the Undergraduate Catalog. This course may also simultaneously satisfy a College of Engineering Breadth requirement. The following is a list of suggested Professional and Career Preparation prescribed Breadth courses. Some of the courses may not be offered in a particular year.

ACCT 352	Law and Social Issues in Business
AFSC 310	Leadership Studies I
AFSC 311	Leadership Studies II
BUAD 100	Introduction to Business
BUAD 306	Introduction to Service and Operations Management
BUAD 429	Selected Topics in Management
CHEG 410	Acceptance and Resistance to Innovation

CHEG 610	Acceptance and Resistance to Innovation
ECON 676	Environmental Economics
ENGL 392	Teaching Writing One-to-One
EDUC 413	Adolescent Development and Educational Psychology
EDUC 414	Teaching Exceptional Adolescents
EDUC 419	Diversity in Secondary Education
EDUC 420	Reading in the Content Areas
SCEN 491	Teaching Science in Secondary Schools
ENEP 117	Science, Society and Energy
ENEP 402	Electricity Policy and Planning
ENEP 470	Readings in Energy and Environment
ENTR 150	Business Basics for Entrepreneurs
ENTR 155	Start Up of the Professional You
ENTR 156	From Ideas to Action
ENTR 157	Venturing for Good
ENTR 351	Entrepreneurial Marketing
ENTR 353	ENTR Apprentice: Leadership & Influence
ENTR 364	Entrepreneurship in Practice: Internship
ENTR 420	Social Entrepreneurship
ENTR 450	Business Accelerator for New Ventures
ENTR 451	Special Topics in Entrepreneurship
ENTR 455	Startup Experience I
ENTR 456	Startup Experience II
ENTR 457	Legal Issues for Entrepreneurs
ENTR 458	Developing New Technology-Based Products
FINC 459	Startup Finance & Raising Capital for Entrepreneurs
ENTR 460/660	High Technology Entrepreneurship
ENTR 464	Social Entrepreneurship Practicum Credit(s): 3
ENTR 616	Applied Creativity
FINC 200	Fundamentals of Finance
LEAD 110	Perspectives on Leadership
LEAD 340	Leadership Internship
LEAD 341	Decision-Making and Leadership
LEAD 400	Leadership for the Common Good
LEAD 404	Leadership in Organizations
LEAD 411	Topics in Leadership Dynamics
MAST 676	Environmental Economics
MLSC 406	Advanced Leadership II
UAPP 325	Public Policy Analysis
UAPP 406	Plan Sustainable Communities & Regions
UAPP 411	Regional Watershed Management
UAPP 421	Contemporary Issues in a Global Society

4 + 1 Degree Programs

Well-qualified civil and environmental engineering majors may apply to the 4+1 program which culminates in the student earning a Bachelor of Civil Engineering (BCE) degree or a Bachelor of Environmental Engineering (BENE) degree, and a Master of Civil Engineering (MCE) degree within five years. The program is limited to University of Delaware undergraduates pursuing the BCE or BENE degree with a minimum grade point average of 3.25 at the time of application. Students must complete at least 90 credits toward the undergraduate degree before they can be enrolled in the program. Only full-time students at the time of application are eligible.

Additionally, the College of Engineering and the College of Business and Economics offer a joint five-year program that leads to a bachelor's degree in an engineering major and a Master of Business Administration degree from the College of Business and Economics. Discuss this program with the Assistant Dean for more information: https://lerner.udel.edu/programs/dual-degrees/master-civil-engineering-mba/

Academic Minors

Minor in Civil Engineering

A grade of C- or better is required in all the courses completed for the minor. Before beginning the civil engineering courses, the student must meet the required mathematics, physics, and other pre-requisites for each course. Required courses:

```
CIEG 211 - Statics (3cr.)
CIEG 212 - Solid Mechanics (3cr.)
CIEG 305 - Fluid Mechanics (3cr.)
CIEG 320 - Soil Mechanics and Foundation Engineering (3cr.)
```

Nine additional credits (three courses) in civil engineering from the approved minor course list must be taken of which at least six credits must be at the 300-level or higher. CIEG 331 and CIEG 438 cannot both be used toward the minor. CIEG 367 and CIEG 467 can only be used toward the minor if approved by the undergraduate committee.

All students must complete three of the following courses:

CIEC 204	Charles And Andrew Destru
CIEG 301	Structural Analysis and Design
CIEG 311	Dynamics
CIEG 315	Probability and Statistics for Engineers
CIEG 318	Introduction to Railroads
CIEG 321	Geotechnical Engineering
CIEG 331	Environmental Engineering
CIEG 351	Transportation Engineering
CIEG 401	Introduction to the Finite Element Method
CIEG 402	Introduction to Sustainability Principles in Civil Engineering
CIEG 403	Sustainability Applications in Infrastructure
CIEG 404	Prestressed Concrete Design
CIEG 407	Building Design
CIEG 412	Structural Steel Design
CIEG 413	Advanced Structural Analysis
CIEG 414	Railroad Geotechnical Engineering
CIEG 417	Introduction to Railroad Safety and Derailment Engineering
CIEG 418	Railroad Engineering
CIEG 419	Concrete Materials

Foundation Engineering
Earth Structures Engineering
Advanced Reinforced Concrete Design
Earth Retaining Structures
Unsaturated Soil Mechanics
Deep Foundations
Ground Improvement Methods
Processing, Recycling, Management of Solid Wastes
Water and Wastewater Engineering
Water Resources Engineering
Transportation Facilities Design
Roadway Geometric Design
Urban Transportation Planning
Contemporary Topics in Transportation
Pavement Analysis and Design
Optimization in Design and Construction
Transportation Sustainability
Traffic Engineering and Modeling
Global Sustainable Engineering
Introduction to Coastal Engineering
Engineering Project Management
with prior approval of undergraduate committee
with prior approval of undergraduate committee
Introduction to Surveying
Site Design
Urban Hydrology and Drainage Design
Stormwater Management for Sustainable Development
Experimental Mechanics of Composites

For course suggestions for topical areas within civil engineering (structures, coastal, railroads, etc.), reference the <u>Undergraduate Catalog</u>.

Minor in Sustainable Infrastructure

The objective of this minor is to provide the basic knowledge and skills required in balancing civil infrastructure development with environmental and societal impacts, so that sustainability can be methodically defined and attained. Students will learn the principles of sustainability and the fundamental tools needed to assess sustainability; be able to evaluate the impact of proposed infrastructure development on limited natural resources; recognize and assess the political, economic, environmental, and social impacts of infrastructure development; and develop the insight needed to find solutions that minimize the effect of infrastructure development on local communities and across global boundaries.

To earn a minor in Sustainable Infrastructure, students must successfully complete a minimum of 15 credits as described below with a minimum grade of C- in each course.

All students must complete the following core course:

CIEG 402 Introduction to Sustainability Principles in Civil Engineering

All students must complete one of the following core courses:

CIEG 403 Sustainability Applications in Infrastructure

CIEG 465 Global Sustainable Engineering

All students must complete three of the following sustainability-related breadth courses:

	,
APEC 343	Environmental Economics
BUAD 429	Sustainability and Green Business
ECON 311	Economics of Developing Countries
ELEG 415	Electric Power Systems
ELEG 491	Ethics/Impacts of Engineering
ENEP 402	Electricity Policy and Planning
ENEP 410	Political Economy of the Environment
ENTR 157	Venturing for Good
ENTR 420	Social Entrepreneurship
ENTR 489	Eco-Entrepreneurship Practicum
GEOG 422	Resources, Development and the Environment
LEAD 400	Leadership for the Common Good
MEEG 435	Wind Power Engineering
PHIL 448	Environmental Economics
POSC 350	Politics and the Environment
POSC 491	Politics of Developing Nations
SOCI 471	Disasters, Vulnerability & Development
UAPP 406	Plan Sustainable Communities & Regions
UAPP 411	Regional Watershed Management
UAPP 421	Contemporary Issues in a Global Society

Several courses included as electives in the minor may require completion of pre-requisite courses for students in some majors.

Minor in Environmental Engineering

A minor in environmental engineering may be earned by a student in any University bachelor's degree program through the successful completion of a minimum of 18 credits as described below. Before beginning the environmental engineering courses, the student must meet the required mathematics, physics, and other pre-requisites for each course. A grade of C- or better is required in all the courses completed for the minor.

One chemistry course is required:

CHEM 104/134* General Chemistry

Two environmental engineering courses are required:

CIEG 233* Environmental Engineering Processes I

CIEG305** Fluid Mechanics (lab optional)

An additional three courses in environmental engineering must be taken from the following:

CIEG 430	Water Quality Modeling
CIEG 433	Hazardous Waste Management
CIEG 434	Air Pollution Control
CIEG 436	Processing, Recycling, Management of Solid Wastes
CIEG 438*	Water and Wastewater Engineering
CIEG 440	Water Resources Engineering
CIEG 498	Groundwater Flow and Contaminant Transport

^{*}Will not count if CIEG 331 is taken in place of CIEG 233

^{*}Can be replaced with CHEM 112

^{*}Can be replaced with CIEG 331

^{**}Can be replaced with MEEG 331 or CHEG 341

Minor in Environmental Sustainability

The objective of this minor is to provide basic knowledge and skills required in balancing technological development and environmental impacts, so that sustainability can be methodically defined and attained. Students will have the opportunity to assess sustainability using tools such as lifecycle analysis, risk assessment, and the triple bottom line of economic, environmental, and societal effects; recognize and specify engineering solutions to resource, pollution, and sanitation problems that are in harmony with local cultures; relate environmental issues to local political, societal, and economic factors to provide a proper context for sustainable solutions; and evaluate and compare appropriate technologies and other sustainable solutions across global boundaries.

To receive a minor in environmental sustainability, students must complete a total of 15 credits in accordance with the requirements specified below. Before beginning these courses, the student must meet the required course pre-requisites. A minimum grace of C- must be achieved in each course qualifying for the minor.

Recommended pre-requisite:

The student is advised to have completed an introductory course in mass and energy balances such as CHEG 112, CIEG 233, or MEEG 331.

Core courses:

CIEG 445 Industrial Ecology

CIEG 465 Global Sustainable Engineering

One of the following pollution control technology courses:

CIEG 433 Hazardous Waste Management

CIEG 436 Processing, Recycling, Management of Solid Wastes

CIEG 438 Water and Wastewater Engineering

Two of the following sustainability-related breadth courses:

APEC 343	Environmental Economics
BUAD 429	Sustainability and Green Business
ECON 311	Economics of Developing Countries
ENEP 410	Environmental Sustainability: Economic and Policy Analysis
ENTR 489	Eco-Entrepreneurship Practicum
GEOG 320	Water and Society
GEOG 422	Resources, Development and the Environment

MAST 676 Environmental Economics
PHIL 448 Environmental Ethics
POSC 350 Politics and the Environment
POSC 491 Politics of Developing Nations

SOCI 471 Disasters, Vulnerability & Development UAPP 406 Plan Sustainable Communities & Regions

UAPP 411 Regional Watershed Management

Department Faculty

Name	Office	Title	Ph.D.	Areas of Expertise
Ashish Asutosh	342C DuPont Hall	Assistant Professor	University of Florida	Sustainability, Renewable Energy, Construction
Daniel Cha	346A DuPont Hall	Professor	University of California, Berkeley	Biochemistry, Environmental and Water Resources, Sustainability, Water
Michael Chajes	358A DuPont Hall	Professor and Dean of Honors College	University of California, Davis	Bridges for the Future, Infrastructure, Sustainability, Structural
Yu-Ping Chin	474 ISE Lab	Professor	University of Michigan	Biochemistry, Coastal and Ocean, Environmental and Water Resources, Sustainability, Water
Pei Chiu	468 ISE Lab	Professor	Stanford University	Environmental and Water Resources, Sustainability, Water
Rachel Davidson	360B DuPont Hall	Professor and Associate Dean for Academic Affairs	Stanford University	Disasters, Infrastructure, Infrastructure Systems, Risk Assessment, Structural
Dominic DiToro	356A DuPont Hall	Edward C. Davis Professor and Director for the Center of Study of Pollutants in the Environment	Princeton University	Coastal and Ocean, Environmental and Water Resources, Risk Assessment
Shangjia Dong	344B DuPont Hall	Assistant Professor	Oregon State University	Disasters, Infrastructure Systems
Ardeshir Faghri	360C DuPont Hall	Professor	University of Virginia	Infrastructure Systems, Sustainability, Transportation
John Gillespie, Jr.	201C Composite Center	Donald C. Phillips Professor	University of Delaware	Bridges for the Future, Materials, Structural, Sustainability

Monique Head	360H DuPont Hall	Associate Professor	Georgia Institute of Technology	Bridges for the Future, Disasters, Infrastructure, Structural, Sustainability
Tianjian Hsu	205 Ocean Eng. Lab	Professor and Director of the Center for Applied Coastal Research	Cornell University	Coastal & Ocean
Yao Hu	217A Pearson Hall	Assistant Professor	University of Illinois at Urbana-Champaign	Big Data, Environmental and Water Resources, Sustainability, Water
Chin-Pao Huang	352A DuPont Hall	Donald C. Phillips and Francis Alison Professor	Harvard University	Environmental and Water Resources, Sustainability, Water
Paul Imhoff	344A DuPont Hall	Professor	Princeton University	Environmental and Water Resources, Sustainability, Water
Allen Jayne	307 DuPont	Assistant Professor	University of Delaware	Structural
Victor Kaliakin	360F DuPont Hall	Professor	University of California, Davis	Geotechnical
James Kirby	201 Ocean Eng. Lab	Edward C. Davis Professor	University of Delaware	Coastal & Ocean, Disasters
Nobuhisa Kobayashi	207 Ocean Eng. Lab	Professor	Massachusetts Institute of Technology	Coastal & Ocean, Disasters
Earl "Rusty" Lee	355 DuPont Hall	Associate Professor	Rensselaer Polytechnic Institute	Disasters, Infrastructure, Infrastructure Systems, Transportation
Haritha Malladi	360A DuPont Hall	Assistant Professor and Director of First- Year Engineering	North Carolina State University	Infrastructure, Materials, Sustainability, Transportation
Julia Maresca	204B Delaware Biotech. Institute	Associate Professor	Penn State University	Biochemistry, Environmental and Water Resources, Water

Jennifer McConnell	358B DuPont Hall	Bentley Systems Early Career Professor	West Virginia University	Big Data, Bridges for the Future, Infrastructure, Materials, Structural, Sustainability	
Christopher Meehan	358A DuPont Hall	Professor	Virginia Tech University	Big Data, Bridges for the Future, Disasters, Geotechnical, Infrastructure, Risk Assessment, Sustainability	
Holly Michael	101A Penny Hall	Professor and Unidel Fraser Russell Career Development Chair in Environmental Geological Sciences	Massachusetts Institute of Technology	Coastal and Ocean, Environmental and Water Resources, Water	
Ri Na	342B DuPont Hall	Assistant Professor	University of Nebraska— Lincoln	Construction, Infrastructure, Sustainability	
Mark Nejad	352B DuPont Hall	Assistant Professor	Wayne State University	Disasters, Infrastructure Systems, Sustainability Transportation	
Jack Puleo	301 DuPont Hall	Professor and Chair	University of Florida	Coastal & Ocean, Disasters, Sustainability	
Jennie Saxe	343A DuPont Hall	Associate Chair and Associate Professor	University of Delaware	Environmental and Water Resources	
Harry "Tripp" Shenton	360E DuPont Hall	Professor and Associate Dean for Undergraduate Education	Johns Hopkins University	Bridges for the Future, Structural	
Mohsin Siddiqui	308 DuPont Hall	Associate Professor	University of Texas at Austin	Construction, Infrastructure Systems	
Jovan Tatar	356B DuPont Hall	Associate Professor	University of Florida	Bridges for the Future, Infrastructure, Materials, Structural, Sustainability	
Carolyn Voter	360C DuPont Hall	Assistant Professor	University of Wisconsin- Madison	Coastal and Ocean, Environmental and Water Resources, Sustainability, Water	
Allan Zarembski	343B DuPont Hall	Professor of Practice	Princeton University	Big Data, Infrastructure, Infrastructure Systems, Transportation	

Administrative and Support Staff

Name	Position	Office	Phone	Email
Christine Murray	Staff Assistant	301 DuPont Hall	302-831-2442	camurray@udel.edu
Nicole Murphy	Assistant to the Chair	301A DuPont Hall	302-831-3017	nbmurphy@udel.edu
Joe Hofmann*	Undergraduate Academic Advisor	301 DuPont Hall	302-831-0836	jhofmann@udel.edu
Jacquee Lukawski	Graduate Academic Advisor	301 DuPont Hall	302-831-6570	jacquee@udel.edu
Gary Wenczel	Structural and Geotechnical Lab Manager	281 DuPont Hall	302-831-6936	wenczel@udel.edu
Yu-Han Yu	Environmental Lab Manager	143A DuPont Hall	302-831-4457	yuhanyu@udel.edu

^{*} primary contact for all undergraduate concerns

Advisement

Students are assigned to a faculty advisor upon arrival on campus. Students in civil engineering and environmental engineering will normally have the same faculty advisor for the entire time they are enrolled in the undergraduate program in the Department of Civil or Environmental Engineering. Students in construction engineering and management will change advisors each year. It is suggested that students meet with their advisor once each semester.

There is a two-week advising period every semester, just prior to the time when students will be registering for courses for the following semester. Students will register for appointments with their faculty advisor using the Blue Hen Success Collaborative. The University will assign students a registration appointment, after which they may enroll in courses.

Joe Hofmann, the department's professional Undergraduate Academic Advisor, is available to meet with students as well.

Advisors for the Class of 2026

Undergraduate advisor assignments are listed on the CEE department webpage (https://ce.udel.edu/academics/undergraduate/) under Handbooks and Advisor Assignments > Current Advisor Assignments.

Student Organizations

To get involved with one of the hundreds of clubs and organizations on campus, visit UD's <u>Registered Student Organizations</u> page. Student organizations in the College of Engineering are listed at https://www.engr.udel.edu/academic-affairs/student-organizations/. Below are some of the organizations with specific relevance to students in the Department of Civil and Environmental Engineering.

Organization	Faculty Advisor	Email
American Society of Civil Engineers (ASCE)	Prof. Allen Jayne	ajayne@udel.edu
Institute of Transportation Engineers (ITE)	Prof. Rusty Lee	elee@udel.edu
Environmental Engineering Student Association	Prof. Daniel Cha	cha@udel.edu
Engineers Without Borders (EWB)	Prof. Jennie Saxe	jpsaxe@udel.edu
American Society of Highway Engineers (ASHE)	Matheu Carter	matheu@udel.edu
Society of Hispanic Professional Engineers (SHPE)	Prof. Raul Lobo	lobo@udel.edu
National Society of Black Engineers (NSBE)	Prof. Sheldon Hewlett	shewlett@udel.edu
Society of Women Engineers (SWE)	Prof. Catherine Fromen	cfromen@udel.edu
American Concrete Institute (ACI)	Prof. Jovan Tatar	jtatar@udel.edu
Construction Engineers of America (CEA)	Prof Ri Na	nari@udel.edu

Department Mentoring Program

Students are encouraged to participate in the Department's Mentoring Program

https://ce.udel.edu/academics/undergraduate/mentoring-program, which has a two-pronged approach: 1) student-to-student (S2S), where first-year and transfer students are paired with returning students; and 2) student-to-industry professional (S2I), matching an undergraduate engineering student with an engineering industry professional.

Engineering industry professionals are volunteers who have indicated an interest in being a mentor to an undergraduate engineering student and providing career advice and support as students navigate college and planning for their future as engineers. Participation at any level is voluntary; various events, activities and workshops are geared towards professional development and creating opportunities for meaningful exchanges among the program participants. Email ihofmann@udel.edu if you are interested in participating.

Computing Facilities

The University maintains general access computing sites throughout the campus. The site list is available at https://sites.udel.edu/askit/support/.

Engineering Computer Laboratories

The College maintains computing sites specifically for engineering students. Students can use 046 Colburn Lab, 010 Spencer Lab, and 101-D Pearson Hall when they are not in use for teaching. Computer lounges are located in Spencer Lab as well. For more information, see https://www.engr.udel.edu/it/ecalc/.

Personal Computers

The College of Engineering has no specific requirements regarding brand, operating system (i.e., Windows vs. MacOS), or configuration. Please refer to http://sites.udel.edu/computing-purchases/personal-specs/ for recommended specifications when purchasing a new computer or laptop. Students in all programs will benefit from using a laptop computer (vs. a desktop), due to an emphasis on in-class and group technology-based projects.

- One of the unique features of Apple computers is that they can be set up to run both Mac and Windows operating systems and software. For some students, this flexibility is very helpful.
- AppsAnywhere is a web-based App Store that allows students to access software licensed for student use by the College of Engineering, on university-owned and personally-owned computers running Windows. AppsAnywhere is easy to use and enables students to launch software titles with a single click via a new on-demand streaming technology. It is possible to use AppsAnywhere on a Mac, but you will need to run Windows on a Mac (via virtual machine or Boot Camp).

Computer-Aided Design (CAD) Software

Computer-Aided Design, otherwise known as CAD, is commonly used today in engineering practice. Years ago engineers would hand off their preliminary designs and sketches to CAD operators or technicians for them to produce a professional drawing. Today, however, having proficiency in CAD as an engineer is as critical as using a word processor, email, or spreadsheet: CAD is simply another tool in the modern engineer's toolbox. Engineering students need to develop a certain level of competency in using CAD programs while they are in school. Students who have CAD experience may be more marketable for internships, summer jobs, co-ops, and full-time employment.

There are two major CAD programs in use today in the civil and environmental engineering professions – Bentley Systems Inc. "MicroStation" and Autodesk's "AutoCAD." Neither is an industry standard, but MicroStation tends to be used more in the transportation and civil/site development fields (the "horizontal" fields) and AutoCAD tends to be used more in the structural/building fields (the "vertical" fields). The platform choice, however, is often dictated by the client, and therefore, consulting firms will frequently use both programs.

Civil engineering majors will be introduced to MicroStation in CIEG161, Introduction to Civil Engineering Design. Construction Engineering and Management students will be introduced to CAD software in CIEG291, CAD and Building Information Modeling in Construction.